Velocitat del efector per un robot planar 2DOF
Dades del problema
- Braços del robot: \(a_1 = 3\), \(a_2 = 2\)
- Angles: \(q_1 = 30^\circ = \pi/6 \, \text{rad}\), \(q_2 = 45^\circ = \pi/4 \, \text{rad}\)
- Velocitats articulars: \(\dot{q}_1 = 1 \, \text{rad/s}\), \(\dot{q}_2 = 0.5 \, \text{rad/s}\)
1️⃣ Posició del efector
\[
x = a_1 \cos q_1 + a_2 \cos(q_1 + q_2), \quad
y = a_1 \sin q_1 + a_2 \sin(q_1 + q_2)
\]
2️⃣ Jacobiano
\[
\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} =
\begin{bmatrix}
\frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} \\
\frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2}
\end{bmatrix}
\begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix}
\]
\[
\frac{\partial x}{\partial q_1} = -a_1 \sin q_1 - a_2 \sin(q_1 + q_2), \quad
\frac{\partial x}{\partial q_2} = - a_2 \sin(q_1 + q_2)
\]
\[
\frac{\partial y}{\partial q_1} = a_1 \cos q_1 + a_2 \cos(q_1 + q_2), \quad
\frac{\partial y}{\partial q_2} = a_2 \cos(q_1 + q_2)
\]
3️⃣ Substituïm valors
\[
q_1 + q_2 = 0.5236 + 0.7854 = 1.309 \, \text{rad}
\]
\[
\sin(q_1) = 0.5, \quad \cos(q_1) \approx 0.866
\]
\[
\sin(q_1+q_2) \approx 0.966, \quad \cos(q_1+q_2) \approx 0.259
\]
4️⃣ Calcul del Jacobiano numèric
\[
\frac{\partial x}{\partial q_1} = -3(0.5) - 2(0.966) = -3.432
\]
\[
\frac{\partial x}{\partial q_2} = -2(0.966) = -1.932
\]
\[
\frac{\partial y}{\partial q_1} = 3(0.866) + 2(0.259) = 3.116
\]
\[
\frac{\partial y}{\partial q_2} = 2(0.259) = 0.518
\]
\[
J =
\begin{bmatrix}
-3.432 & -1.932 \\
3.116 & 0.518
\end{bmatrix}
\]
5️⃣ Calcul de la velocitat del efector
\[
\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} =
\begin{bmatrix} -3.432 & -1.932 \\ 3.116 & 0.518 \end{bmatrix}
\begin{bmatrix} 1 \\ 0.5 \end{bmatrix}
\]
\[
\dot{x} = -3.432 - 0.966 = -4.398, \quad
\dot{y} = 3.116 + 0.259 = 3.375
\]
✅ Resultat final
\[
\boxed{\dot{x} \approx -4.40 \, \text{unitats/s}, \quad \dot{y} \approx 3.38 \, \text{unitats/s}}
\]
Gràfic del robot i la velocitat del efector