Loading [MathJax]/jax/output/CommonHTML/jax.js

Exemple Numèric de Dinàmica de Braç Robòtic

1. Paràmetres del Sistema

2. Energia Cinètica

2.1. Posicions:

x1=l1sin(θ1)=1sin(π4)=0.707

y1=l1cos(θ1)=1cos(π4)=0.707

x2=l1sin(θ1)+l2sin(θ1+θ2) =1sin(π4)+0.5sin(π4+π6) =0.707+0.5sin(5π12) =0.707+0.50.965=0.707+0.483=1.19

y2=l1cos(θ1)l2cos(θ1+θ2) =1cos(π4)0.5cos(π4+π6) =0.7070.50.258=0.7070.129=0.836

2.2. Velocitat:

v1=[l1cos(θ1)˙θ1l1sin(θ1)˙θ1]=[1cos(π4)11sin(π4)1]=[0.7070.707]

v2=[l1cos(θ1)˙θ1+l2cos(θ1+θ2)(˙θ1+˙θ2)l1sin(θ1)˙θ1l2sin(θ1+θ2)(˙θ1+˙θ2)] =[0.707+0.5cos(5π12)(1+0.5)0.7070.5sin(5π12)(1+0.5)] =[0.707+0.50.2581.50.7070.50.9651.5] =[0.707+0.1940.7070.723]=[0.9011.43]

2.3. Energia Cinètica:

K1=12m1v21=121(0.7072+(0.707)2)=12(0.5+0.5)=0.5

K2=12m2v22=120.5(0.9012+(1.43)2) =0.25(0.812+2.044)=0.252.856=0.714

K=K1+K2=0.5+0.714=1.214

3. Energia Potencial

3.1. Energia Potencial:

U=(m1+m2)gl1cos(θ1)m2gl2cos(θ1+θ2)

U=(1+0.5)9.811cos(π4)0.59.810.5cos(π4+π6) =1.59.810.7070.59.810.258 =10.411.27=11.68

4. Lagrangiana

4.1. Lagrangiana:

L=KU

L=1.214(11.68)=1.214+11.68=12.894

5. Equacions de Lagrange

5.1. Equacions de Lagrange:

ddt(L˙θi)Lθi=τi

L˙θ1=˙θ1(0.5(0.7072+(0.707)2))=0.5(0.7071+0.7071)=0.707

Lθ1=θ1(10.410.707)=10.41(0.707)=7.36

ddt(L˙θ1)=ddt(0.707)=0

τ1=07.36=7.36

L˙θ2=˙θ2(0.714)=0.714

Lθ2=θ2(1.27)=1.27

ddt(L˙θ2)=ddt(0.714)=0

τ2=0(1.27)=1.27

6. Forces i Moments

6.1. Força de Reacció:

Fr1=m1gsin(θ1)=19.81sin(π4)=9.810.707=6.93

Fr2=m2gsin(θ2)=0.59.81sin(π6)=0.59.810.5=2.45

6.2. Moment de Reacció:

Mr1=m1gl1cos(θ1)=19.811cos(π4)=9.810.707=6.93

Mr2=m2gl2cos(θ2)=0.59.810.5cos(π6)=0.59.810.433=2.12