2.1. Posicions:
x1=l1sin(θ1)=1⋅sin(π4)=0.707
y1=l1cos(θ1)=1⋅cos(π4)=0.707
x2=l1sin(θ1)+l2sin(θ1+θ2) =1⋅sin(π4)+0.5⋅sin(π4+π6) =0.707+0.5⋅sin(5π12) =0.707+0.5⋅0.965=0.707+0.483=1.19
y2=−l1cos(θ1)−l2cos(θ1+θ2) =−1⋅cos(π4)−0.5⋅cos(π4+π6) =−0.707−0.5⋅0.258=−0.707−0.129=−0.836
2.2. Velocitat:
v1=[l1cos(θ1)˙θ1−l1sin(θ1)˙θ1]=[1⋅cos(π4)⋅1−1⋅sin(π4)⋅1]=[0.707−0.707]
v2=[l1cos(θ1)˙θ1+l2cos(θ1+θ2)(˙θ1+˙θ2)−l1sin(θ1)˙θ1−l2sin(θ1+θ2)(˙θ1+˙θ2)] =[0.707+0.5⋅cos(5π12)⋅(1+0.5)−0.707−0.5⋅sin(5π12)⋅(1+0.5)] =[0.707+0.5⋅0.258⋅1.5−0.707−0.5⋅0.965⋅1.5] =[0.707+0.194−0.707−0.723]=[0.901−1.43]
2.3. Energia Cinètica:
K1=12m1v21=12⋅1⋅(0.7072+(−0.707)2)=12⋅(0.5+0.5)=0.5
K2=12m2v22=12⋅0.5⋅(0.9012+(−1.43)2) =0.25⋅(0.812+2.044)=0.25⋅2.856=0.714
K=K1+K2=0.5+0.714=1.214
3.1. Energia Potencial:
U=−(m1+m2)gl1cos(θ1)−m2gl2cos(θ1+θ2)
U=−(1+0.5)⋅9.81⋅1⋅cos(π4)−0.5⋅9.81⋅0.5⋅cos(π4+π6) =−1.5⋅9.81⋅0.707−0.5⋅9.81⋅0.258 =−10.41−1.27=−11.68
4.1. Lagrangiana:
L=K−U
L=1.214−(−11.68)=1.214+11.68=12.894
5.1. Equacions de Lagrange:
ddt(∂L∂˙θi)−∂L∂θi=τi
∂L∂˙θ1=∂∂˙θ1(0.5⋅(0.7072+(−0.707)2))=0.5⋅(0.707⋅1+0.707⋅1)=0.707
∂L∂θ1=−∂∂θ1(10.41⋅0.707)=−10.41⋅(−0.707)=7.36
ddt(∂L∂˙θ1)=ddt(0.707)=0
τ1=0−7.36=−7.36
∂L∂˙θ2=∂∂˙θ2(0.714)=0.714
∂L∂θ2=−∂∂θ2(1.27)=−1.27
ddt(∂L∂˙θ2)=ddt(0.714)=0
τ2=0−(−1.27)=1.27
6.1. Força de Reacció:
Fr1=m1gsin(θ1)=1⋅9.81⋅sin(π4)=9.81⋅0.707=6.93
Fr2=m2gsin(θ2)=0.5⋅9.81⋅sin(π6)=0.5⋅9.81⋅0.5=2.45
6.2. Moment de Reacció:
Mr1=m1gl1cos(θ1)=1⋅9.81⋅1⋅cos(π4)=9.81⋅0.707=6.93
Mr2=m2gl2cos(θ2)=0.5⋅9.81⋅0.5⋅cos(π6)=0.5⋅9.81⋅0.433=2.12