Expand the following: \begin{align} Ss_1 &= \cssId{Step1}{\frac{-F_b1}{2m}t_s1^2-\frac{gt_s1^2}{2}sinα+v_0t_s1} \\[3px] &\cssId{Step2}{{} = \frac{-F_b1}{2m}\Bigg(\frac{v_0}{\frac{F_b1}{m}+g·sinα}\Bigg)^2-g\frac{\bigg(\frac{v_0}{\frac{F_b1}{m}+g·sinα}\bigg)^2}{2}sinα+v_0\frac{v_0}{\frac{F_b1}{m}+g·sinα}} \\[3px] &\cssId{Step3}{{} = -\frac{\frac{F_b1}{m}v_0^2}{2{\Big(\frac{f_b1}{m}+g·sinα\Big)^2}}-\frac{gv_0^2·sinα}{2\Big(\frac{f_b1}{m}+g·sinα\Big)^2}+\frac{v_0^2}{\frac{F_b1}{m}+g·sinα}} \\[3px] &\cssId{Step4}{{} = -\frac{v_0^2\Big(\frac{F_b1}{m}+g·sinα\Big)}{2\Big(\frac{F_b1}{m}+g·sinα\Big)^2}+\frac{v_0^2}{\frac{F_b1}{m}+g·sinα}} \\[3px] &\cssId{Step5}{{} = -\frac{v_0^2}{2\Big(\frac{F_b1}{m}+g·sinα\Big)}+\frac{v_0^2}{\frac{F_b1}{m}+g·sinα}=\frac{v_0^2}{2\Big(\frac{F_b1}{m}+g·sinα\Big)}} \\[3px] &\cssId{Step6}{{} = \frac{s_s v_0^2}{v_0^2·cosα+2s_sg·sinα}} \\[3px] &\cssId{Step7}{{..Equation22..} } \\[3px] \end{align}