Data given:
Formula:
\( E = P \times t \times \text{number of tiles} \)
Calculation:
\( E = 40 \, \text{W} \times 5400 \, \text{seconds} \times 60 = 12,960,000 \, \text{Joules} \)
Converting to kWh:
\( E = \frac{12,960,000}{3,600,000} = 3.6 \, \text{kWh} \)
Data given:
Formula:
\( E = P \times t \times \text{number of bicycles} \)
Calculation:
\( E = 120 \, \text{W} \times 2.5 \, \text{hours} \times 20 = 6,000 \, \text{Wh} = 6 \, \text{kWh} \)
Data given:
Formula:
\( E = \text{Area} \times \text{Irradiance} \times t \)
Calculation:
\( E = 200 \, \text{m}^2 \times 700 \, \text{W/m}^2 \times 6 \, \text{hours} = 840,000 \, \text{Wh} = 840 \, \text{kWh} \)
Data given:
Formula:
\( P = 0.5 \times \rho \times A \times v^3 \)
Where \( A = \pi \times r^2 \)
Calculation:
\( A = \pi \times (2)^2 = 12.57 \, \text{m}^2 \)
\( P = 0.5 \times 1.225 \times 12.57 \times (6)^3 = 1,660.3 \, \text{W/turbine} \)
For 10 turbines operating for 3 hours:
\( E = 1,660.3 \times 10 \times 3 = 49,809 \, \text{Wh} = 49.8 \, \text{kWh} \)
Data given:
Formula:
\( E = P \times \text{Area} \times \text{active time} \)
Calculation:
\( E = 50 \, \text{W/m}^2 \times 100 \, \text{m}^2 \times 0.8 \times 3 \, \text{hours} = 12,000 \, \text{Wh} = 12 \, \text{kWh} \)
Data given:
Formula:
\( E = 30 \times 0.5 \, \text{kWh} \)
Calculation:
\( E = 15 \, \text{kWh} \)
Data given:
Formula:
\( E = \text{attendees} \times 0.1 \, \text{kWh/person/hour} \times \text{time} \)
Calculation:
\( E = 50,000 \times 0.1 \times 3 = 15,000 \, \text{kWh} \)
Data given:
Formula:
\( E = 0.005 \, \text{kWh/person} \times \text{attendees} \)
Calculation:
\( E = 0.005 \times 50,000 = 250 \, \text{kWh} \)
Summing up all the energy generated:
\( E_{\text{total}} = 3.6 + 6 + 840 + 49.8 + 12 + 15 + 15,000 + 250 = 16,176.4 \, \text{kWh} \)
Estimated energy consumption: 800 kWh
Total energy generated: 16,176.4 kWh
Conclusion: The concert generates far more energy than it consumes.