Vincenty Interactiu — Fórmules i Iteracions Correctes

Exemple: Les Sables-d’Olonne → 46.494953° N, −1.792091°; Saint-François → 16.25236° N, −61.27332°





Fórmules a aplicar

Vincenty inversa sobre el·lipsoide WGS-84:

\\[ \begin{aligned} U_1 &= \arctan((1-f)\tan \phi_1), & U_2 &= \arctan((1-f)\tan \phi_2) \\\\ L &= \lambda_2 - \lambda_1 \\\\ \lambda_0 &= L, \quad \text{Iterem:} \\\\ \sin\sigma &= \sqrt{(\cos U_2 \sin \lambda)^2 + (\cos U_1 \sin U_2 - \sin U_1 \cos U_2 \cos \lambda)^2} \\\\ \cos\sigma &= \sin U_1 \sin U_2 + \cos U_1 \cos U_2 \cos \lambda \\\\ \sigma &= \arctan2(\sin\sigma, \cos\sigma) \\\\ \sin\alpha &= \frac{\cos U_1 \cos U_2 \sin \lambda}{\sin \sigma} \\\\ \cos^2\alpha &= 1 - \sin^2 \alpha \\\\ \cos 2\sigma_m &= \cos \sigma - \frac{2 \sin U_1 \sin U_2}{\cos^2 \alpha} \\\\ C &= \frac{f}{16} \cos^2 \alpha (4 + f(4 - 3 \cos^2\alpha)) \\\\ \lambda_{new} &= L + (1-C)f \sin\alpha (\sigma + C \sin\sigma (\cos 2\sigma_m + C \cos \sigma (-1 + 2 \cos^2 2\sigma_m))) \\\\ \text{Després de convergir:} \\\\ u^2 &= \cos^2 \alpha \frac{a^2 - b^2}{b^2} \\\\ A &= 1 + \frac{u^2}{16384} (4096 + u^2(-768 + u^2(320-175 u^2))) \\\\ B &= \frac{u^2}{1024} (256 + u^2(-128 + u^2(74-47u^2))) \\\\ \Delta\sigma &= B \sin\sigma (\cos 2\sigma_m + \frac{B}{4} (\cos\sigma(-1+2\cos^2 2\sigma_m) - \frac{B}{6} \cos 2\sigma_m (-3+4\sin^2\sigma)(-3+4\cos^2 2\sigma_m))) ) \\\\ s &= b A (\sigma - \Delta\sigma) \end{aligned} \\]