Vincenty Inverse Method — Complete Numerical Example

1) Input coordinates

Les Sables-d’Olonne
φ₁ = latitude of start point (north positive)
λ₁ = longitude of start point (east positive)

Saint-François (Guadeloupe)
φ₂ = latitude of end point
λ₂ = longitude of end point

$$L = \lambda_2 - \lambda_1$$
L = longitude difference between the two points (initial estimate)

2) WGS-84 ellipsoid

$$a,\ f,\ b$$
a = equatorial radius of Earth (meters)
b = polar radius of Earth (meters)
f = flattening (how much Earth is squashed)

3) Reduced latitudes

$$\tan U_i = (1-f)\tan\varphi_i$$
U = reduced latitude (latitude on a reference sphere)
φ = geographic latitude
Used to simplify ellipsoid geometry
$$U_1,\ U_2$$
U₁ = reduced latitude of start point
U₂ = reduced latitude of end point

4) Iterative solution for longitude λ

$$\lambda_0 = L$$
λ = longitude difference on auxiliary sphere (iterated value)
$$ \sin\sigma = \sqrt{(\cos U_2 \sin\lambda)^2 + (\cos U_1 \sin U_2 - \sin U_1 \cos U_2 \cos\lambda)^2} $$
σ = angular distance between points on the sphere
sinσ = sine of that distance
$$ \cos\sigma = \sin U_1 \sin U_2 + \cos U_1 \cos U_2 \cos\lambda $$
cosσ = cosine of angular distance
$$\sigma = \operatorname{atan2}(\sin\sigma,\cos\sigma)$$
σ = spherical arc length (radians)
$$ \sin\alpha = \frac{\cos U_1 \cos U_2 \sin\lambda}{\sin\sigma} $$
α = azimuth of geodesic at equator crossing
sinα = how tilted the path is east-west
$$\cos^2\alpha = 1 - \sin^2\alpha$$
cos²α = squared north-south component of the path
$$ \cos2\sigma_m = \cos\sigma - \frac{2\sin U_1 \sin U_2}{\cos^2\alpha} $$
σₘ = midpoint of geodesic on the sphere
cos2σₘ = used for ellipsoid corrections
IterλΔλsinσcosσ σsinαcos²αcos2σₘ
0-1.038143289
1-1.040417114-2.27e-30.839510.543310.99322-0.672450.54739-0.21772
2-1.040421414-4.30e-60.843100.537901.00175-0.676900.54204-0.21005
3-1.040421422-8.13e-90.843550.537051.00387-0.677220.54138-0.20935
4-1.040421422-1.5e-110.843550.537051.00387-0.677220.54138-0.20935
5-1.040421422-2.9e-140.8435530.5370461.003866-0.6772150.541379-0.209354
Δλ = change between iterations → convergence when very small

5) Distance computation

$$u^2 = \cos^2\alpha \frac{a^2-b^2}{b^2}$$
u² = ellipsoid shape factor
$$A,\ B$$
A = scale factor
B = correction factor
$$\Delta\sigma$$
Correction to spherical distance
$$s = bA(\sigma - \Delta\sigma)$$
s = true geodesic distance on ellipsoid (meters)

6) Bearings

$$\alpha_1$$
Initial bearing at start point (direction to travel)
$$\alpha_2$$
Final bearing at destination

Final result