Vincenty Inverse Method — Complete Numerical Example
1) Input coordinates
Start: Les Sables-d’Olonne
φ₁ = 46.494953° → 0.81149001541 rad
λ₁ = −1.792091° → −0.03128378623 rad
End: Saint-François (Guadeloupe)
φ₂ = 16.252360° → 0.28365719322 rad
λ₂ = −61.273320° → −1.06942707541 rad
$$L = \lambda_2 - \lambda_1 = -1.03814328918$$
L = initial longitude difference (radians)
2) WGS-84 ellipsoid
$$a = 6378137\ \text{m},\quad f = \frac{1}{298.257223563},\quad b = 6356752.314245\ \text{m}$$
a = equatorial radius, b = polar radius, f = flattening
3) Reduced latitudes
$$\tan U_i = (1-f)\tan\varphi_i$$
U = latitude on auxiliary sphere (accounts for flattening)
$$U_1 = 0.80981293556,\quad U_2 = 0.28275610843$$
4) Iterative solution for λ (full convergence table)
$$\lambda_0 = L = -1.0381432891827342$$
Initial guess: longitude difference on the auxiliary sphere
| Iter |
λ (rad) |
Δλ (rad) |
sin σ |
cos σ |
σ (rad) |
sin α |
cos² α |
cos 2σₘ |
| 0 |
-1.0381432891827342 |
— |
— |
— |
— |
— |
— |
— |
| 1 |
-1.0404171135171536 |
-2.2738243344e-03 |
0.839510 |
0.543310 |
0.993219 |
-0.672447 |
0.547387 |
-0.217723 |
| 2 |
-1.0404214142043005 |
-4.3006871469e-06 |
0.843102 |
0.537903 |
1.001753 |
-0.676899 |
0.542038 |
-0.210051 |
| 3 |
-1.0404214223337993 |
-8.1294952e-09 |
0.843553 |
0.537045 |
1.003865 |
-0.677215 |
0.541379 |
-0.209354 |
| 4 |
-1.0404214223491663 |
-1.5367000e-11 |
0.843553 |
0.537045 |
1.003866 |
-0.677215 |
0.541379 |
-0.209354 |
| 5 |
-1.0404214223491954 |
-2.9087843e-14 |
0.8435532581 |
0.5370455295 |
1.00386554952 |
-0.67721538895 |
0.54137931697 |
-0.20935377160 |
Δλ = λₙ − λₙ₋₁.
Convergence criterion: |Δλ| < 10⁻¹² rad (achieved at iteration 5).
5) Distance computation
$$
u^2 = \cos^2\alpha \frac{a^2 - b^2}{b^2} = 0.00364862414
$$
$$
A = 1.00091153296,\quad B = 0.00091049548
$$
$$
\Delta\sigma = -0.00016088012
$$
$$
s = bA(\sigma - \Delta\sigma)
$$
$$
s = 6\,388\,165.05\ \text{m} = 6\,388.17\ \text{km}
$$
$$
s_{NM} = \frac{s}{1852} = 3\,449.33\ \text{NM}
$$
6) Bearings
$$
\alpha_1 =
\operatorname{atan2}
(\cos U_2 \sin\lambda,\;
\cos U_1 \sin U_2 -
\sin U_1 \cos U_2 \cos\lambda)
$$
$$
\alpha_2 =
\operatorname{atan2}
(\cos U_1 \sin\lambda,\;
-\sin U_1 \cos U_2 +
\cos U_1 \sin U_2 \cos\lambda)
$$
$$
\alpha_1 = 259.11^\circ,\quad
\alpha_2 = 224.85^\circ
$$
Initial course ≈ west-southwest; final course at destination
Final result
- Shortest distance on Earth ellipsoid: 6,388 km
- Initial bearing: 259.11°
- Final bearing: 224.85°
- Method accuracy: millimeter-level (non-antipodal)